Remobilization and fate of sulphur in mustard

Ann Bot. 2019 Oct 18;124(3):471-480. doi: 10.1093/aob/mcz101.

Abstract

Background and aims: Sulphur (S) is an essential macronutrient involved in numerous metabolic pathways required for plant growth. Crops of the plant family Brassicaceae require more S compared with other crops for optimum growth and yield, with most S ultimately sequestered in the mature seeds as the storage proteins cruciferin and napin, along with the unique S-rich secondary metabolite glucosinolate (GSL). It is well established that S assimilation primarily takes place in the shoots rather than roots, and that sulphate is the major form in which S is transported and stored in plants. We carried out a developmental S audit to establish the net fluxes of S in two lines of Brassica juncea mustard where seed GSL content differed but resulted in no yield penalty.

Methods: We quantified S pools (sulphate, GSL and total S) in different organs at multiple growth stages until maturity, which also allowed us to test the hypothesis that leaf S, accumulated as a primary S sink, becomes remobilized as a secondary source to meet the requirements of GSL as the dominant seed S sink.

Key results: Maximum plant sulphate accumulation had occurred by floral initiation in both lines, at which time most of the sulphate was found in the leaves, confirming its role as the primary S sink. Up to 52 % of total sulphate accumulated by the low-GSL plants was lost through senesced leaves. In contrast, S from senescing leaves of the high-GSL line was remobilized to other tissues, with GSL accumulating in the seed from commencement of silique filling until maturity.

Conclusion: We have established that leaf S compounds that accumulated as primary S sinks at early developmental stages in condiment type B. juncea become remobilized as a secondary S source to meet the demand for GSL as the dominant seed S sink at maturity.

Keywords: Sulphur; assimilation; brassica; canola; glucosinolate; mustard; remobilization; sink; source; storage proteins; sulphate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glucosinolates*
  • Mustard Plant*
  • Plant Leaves
  • Seeds
  • Sulfur

Substances

  • Glucosinolates
  • Sulfur