Adaptive Morphological Reconstruction for Seeded Image Segmentation

IEEE Trans Image Process. 2019 Nov;28(11):5510-5523. doi: 10.1109/TIP.2019.2920514. Epub 2019 Jun 7.

Abstract

Morphological reconstruction (MR) is often employed by seeded image segmentation algorithms such as watershed transform and power watershed, as it is able to filter out seeds (regional minima) to reduce over-segmentation. However, the MR might mistakenly filter meaningful seeds that are required for generating accurate segmentation and it is also sensitive to the scale because a single-scale structuring element is employed. In this paper, a novel adaptive morphological reconstruction (AMR) operation is proposed that has three advantages. First, AMR can adaptively filter out useless seeds while preserving meaningful ones. Second, AMR is insensitive to the scale of structuring elements because multiscale structuring elements are employed. Finally, the AMR has two attractive properties: monotonic increasingness and convergence that help seeded segmentation algorithms to achieve a hierarchical segmentation. Experiments clearly demonstrate that the AMR is useful for improving performance of algorithms of seeded image segmentation and seed-based spectral segmentation. Compared to several state-of-the-art algorithms, the proposed algorithms provide better segmentation results requiring less computing time.