Walking to your right music: a randomized controlled trial on the novel use of treadmill plus music in Parkinson's disease

J Neuroeng Rehabil. 2019 Jun 7;16(1):68. doi: 10.1186/s12984-019-0533-9.

Abstract

Background: Rhythmic Auditory Stimulation (RAS) can compensate for the loss of automatic and rhythmic movements in patients with idiopathic Parkinson's disease (PD). However, the neurophysiological mechanisms underlying the effects of RAS are still poorly understood. We aimed at identifying which mechanisms sustain gait improvement in a cohort of patients with PD who practiced RAS gait training.

Methods: We enrolled 50 patients with PD who were randomly assigned to two different modalities of treadmill gait training using GaitTrainer3 with and without RAS (non_RAS) during an 8-week training program. We measured clinical, kinematic, and electrophysiological effects of both the gait trainings.

Results: We found a greater improvement in Functional Gait Assessment (p < 0.001), Tinetti Falls Efficacy Scale (p < 0.001), Unified Parkinson Disease Rating Scale (p = 0.001), and overall gait quality index (p < 0.001) following RAS than non_RAS training. In addition, the RAS gait training induced a stronger EEG power increase within the sensorimotor rhythms related to specific periods of the gait cycle, and a greater improvement of fronto-centroparietal/temporal electrode connectivity than the non_RAS gait training.

Conclusions: The findings of our study suggest that the usefulness of cueing strategies during gait training consists of a reshape of sensorimotor rhythms and fronto-centroparietal/temporal connectivity. Restoring the internal timing mechanisms that generate and control motor rhythmicity, thus improving gait performance, likely depends on a contribution of the cerebellum. Finally, identifying these mechanisms is crucial to create patient-tailored, RAS-based rehabilitative approaches in PD.

Trial registration: NCT03434496 . Registered 15 February 2018, retrospectively registered.

Keywords: Gait rehabilitation; GaitTrainer3; Parkinson’s disease; Rhythmic auditory stimulation.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Acoustic Stimulation / methods*
  • Aged
  • Biomechanical Phenomena
  • Brain / physiopathology
  • Cues
  • Exercise Therapy / methods*
  • Female
  • Gait / physiology
  • Humans
  • Male
  • Middle Aged
  • Music*
  • Parkinson Disease / physiopathology
  • Parkinson Disease / rehabilitation*
  • Physical Therapy Modalities
  • Walking / physiology

Associated data

  • ClinicalTrials.gov/NCT03434496