Tuning the supramolecular isomerism of MOF-74 by controlling the synthesis conditions

Dalton Trans. 2019 Jul 21;48(27):10043-10050. doi: 10.1039/c9dt01572h. Epub 2019 Jun 7.

Abstract

Supramolecular isomerism of metal-organic frameworks (MOFs) is known for several MOF structures, having direct implications on the properties of these materials. Although the synthesis of MOF isomers is mainly serendipitous in nature, achieving controlled formation of a target framework is highly relevant for practical applications. This work discusses the influence of additives and synthesis conditions on the formation of porous isomers containing Zn2+ as nodes and 2,5-dihydroxy-1,4-benzenedicarboxylate (dobdc4-) as a linker. Using solvent mixtures containing strongly coordinated molecules, e.g. N,N'-dimethylformamide (DMF) and N-methylpyrrolidone (NMP), facilitates the formation of porous structures of type [Zn2(dobdc)(S)x]·yS (S = DMF, NMP) which are built from dinuclear Zn2(O)2(CO2)3 secondary building units (SBUs) consisting of two different edge-sharing polyhedra with the Zn2+ ions in a unsaturated coordinative environment. In the presence of water, the Zn2+ dimers are converted to one-dimensional infinite Zn2+ chains, in which the number of Zn2+-linker bonds increases, therefore giving a hydrolytically more stable coordination environment. The full characterization of the isomers as well as their conversion to the most stable isomer is presented.