Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization

Sci Rep. 2019 Jun 4;9(1):8283. doi: 10.1038/s41598-019-44770-7.

Abstract

Sediment-hosted ore deposits contribute a significant amount (up to 65%) of the global resources of lead and zinc. Among them, the Mississippi-Valley type deposits and related oil fields often comprise large-scale hydrothermal systems where regional host rocks are stained with disseminated liquid petroleum (crude oil) and other organic compounds. Current models for the formation of those epigenetic Pb-Zn sulphide deposits consider that metals are mostly leached from basement rocks and their detrital erosional products, and transported by oxidized basinal hydrothermal fluids as chloride complexes. Sulphide precipitation mainly occurs when these basinal brines interact with fluids rich in reduced sulphur species produced mostly by thermochemical sulphate reduction (TSR) mediated by hydrocarbons. Here, using organic geochemistry and Pb isotopes, we provide evidence that petroleum and associated water were key for the formation of sulphide mineralization in the world-class sandstone-hosted ore deposit at Laisvall, not only by supplying reduced sulphur but also by contributing metals in significant amounts. The lead originally found in bitumen of the Alum Shale Formation was transported -during an arc-continent collisional event- by liquid petroleum and associated water to the site of sulphide mineralization. The alteration of petroleum by TSR made lead available for precipitation as sulphide. The petroleum-associated lead represents 40 to 60% of the metal budget in the deposit, the remainder being sourced by leaching of basement rocks.

Publication types

  • Research Support, Non-U.S. Gov't