Metallic photonic crystal-based sensor for cryogenic environments

Opt Express. 2019 May 27;27(11):16344-16359. doi: 10.1364/OE.27.016344.

Abstract

We investigate the design, characterization, and application of metallic photonic crystal (MPC) structures, consisting of plasmonic gold nanogratings on top of a photonic waveguide, as transducers for lab-on-chip biosensing in cryogenic environments. The compact design offers a promising approach to sensitive, in situ biosensing platforms for astrobiology applications (e.g., on the "icy moons" of the outer solar system). We fabricated and experimentally characterized three MPC sensor geometries, with variable nanograting width, at temperatures ranging from 300 K to 180 K. Sensors with wider nanogratings were more sensitive to changes in the local dielectric environment. Temperature-dependent experiments revealed an increase in plasmonic resonance intensity of around 13% at 180 K (compared with 300 K), while the coupled plasmonic-photonic resonance was less sensitive to temperature, varying by less than 5%. Simulation results confirm the relative temperature stability of the plasmonic-photonic mode and, combined with its high sensitivity, suggest a novel application of this mode as the sensing transduction mechanism over wide temperature ranges. To our knowledge, this is among the first reports of the design and characterization of a nanoplasmonic sensor specifically for low-temperature sensing operation.