Mechanically tunable focusing metamirror in the visible

Opt Express. 2019 May 27;27(11):15194-15204. doi: 10.1364/OE.27.015194.

Abstract

A compact, flat lens with dynamically tunable focal length will be an essential component in advanced reconfigurable optical systems. One approach to realize a flat tunable lens is by utilizing metasurfaces, which are two-dimensional nanostructures capable of tailoring the wavefront of incident light. When a metasurface with a hyperboloidal phase profile, i.e., a metalens, is fabricated on a substrate that can be actuated, its focal length can be adjusted dynamically. Here, we design and realize the first reflection type, tunable metalens (i.e., metamirror) operating in the visible regime (670 nm). It is shown that the focal length can be continuously adjusted by up to 45% with a 0% to 20% lateral stretching of the substrate, while maintaining diffraction-limited focusing and high focusing efficiency. Our design as a flat optics element has potential in widespread applications, such as wearable mixed reality systems, biomedical instruments and integrated optics devices.