Investigation of the laser-induced surface damage of KDP crystal by explosion simulation

Opt Express. 2019 May 27;27(11):15142-15158. doi: 10.1364/OE.27.015142.

Abstract

Under nanosecond pulse irradiation, laser-induced damage of Potassium Dihydrogen Phosphate (KDP) crystal is a multi-physical coupling process which mainly includes energy absorption by precursor defects, temperature and pressure rise in the absorption center, and subsequent micro-explosion event. Till now, related research work mainly focuses on modeling the energy absorption stage and determining the temperature or pressure in the absorption center, but knowledge about the explosion stage is rather limited. In this paper, laser-induced damage of KDP crystal has been investigated through explosion simulation. According to the laser damage test results and morphologies of the damage craters, typical precursor defects inducing KDP surface damage have been determined. Based on the knowledge, equivalent explosion simulation models of the laser damage process have been established to reproduce damage crater formation and shockwave propagation. Finally, laser damage experiments, combined with time resolved techniques, have been utilized to investigate the variation of damage crater size and shockwave speed with laser fluences. Simulation results given by single core explosion models agree well with the experimental results at fluences lower than 60 J/cm2, while a multicore explosion model is needed to reliably simulate damage crater formation at higher fluences.