Significant Decrease in Activation Temperature for the Generation of Strong Basicity: A Strategy of Endowing Supports with Reducibility

Inorg Chem. 2019 Jun 17;58(12):8003-8011. doi: 10.1021/acs.inorgchem.9b00759. Epub 2019 May 31.

Abstract

Mesoporous solid strong bases are quite attractive due to their good catalytic performance for applications as environmentally friendly catalysts in various reactions. However, pretty harsh conditions are usually compulsory for the fabrication of strong basicity by using traditional thermal activation (e.g., 700 °C for the activation of base precursor KNO3 supported on mesoporous Al2O3). This is energy intensive and harmful to the mesoporous structure. In this study, we report a strategy of endowing supports with reducibility (ESWR) by doping low-valence Cr3+ into mesoporous Al2O3, so that the activation temperature for basicity generation is decreased significantly. Fascinatingly, KNO3 on mesoporous Al2O3 can be motivated to basic sites completely at the temperature of 400 °C via the ESWR strategy, which is much lower than the conventional thermal activation (700 °C). We have demonstrated that the redox reciprocity between KNO3 and Cr3+ is responsible for the low-temperature conversion, and Cr6+ is formed quantitatively as the oxidation product. The obtained solid bases possessing ordered mesostructure and strong basicity provide promising candidates for base-catalyzed synthesis of dimethyl carbonate via transesterification. The catalytic activity is obviously higher than a typical solid base like MgO as well as a series of reported basic catalysts containing alkali metal and alkaline-earth metal oxides.