Climate change will reduce suitable Caatinga dry forest habitat for endemic plants with disproportionate impacts on specialized reproductive strategies

PLoS One. 2019 May 29;14(5):e0217028. doi: 10.1371/journal.pone.0217028. eCollection 2019.

Abstract

Global climate change alters the dynamic of natural ecosystems and directly affects species distributions, persistence and diversity. The impacts of climate change may lead to dramatic changes in biotic interactions, such as pollination and seed dispersal. Life history traits are extremely important to consider the vulnerability of a species to climate change, producing more robust models than those based primarily on species distributions. Here, we hypothesized that rising temperatures and aridity will reduce suitable habitats for the endemic flora of the Caatinga, the most diverse dry tropical forest on Earth. Specifically, species with specialized reproductive traits (e.g. vertebrate pollination, biotic dispersal, obligatory cross-pollination) should be more affected by climate change than those with generalist traits. We performed two ecological niche models (current and future) to simulate the effects of climate change on the distribution area of endemic species in relation to life-history traits. We used the MIROC-ESM and CCSM4 models for both intermediate (RCP4.5) and highest predicted (RCP8.5) GHG emission scenarios, with a resolution of 30' (~1 km2). Habitat with high occurrence probability (>80%) of endemic species will be reduced (up to ~10% for trees, ~13% for non-arboreous, 10-28% for species with any pollination/reproductive system), with the greatest reductions for species with specialized reproductive traits. In addition, the likely concentration of endemic plants in the extreme northeastern portion of the Caatinga, in more mesic areas, coincides with the currently most human-modified areas of the ecosystem, which combined with climate change will further contract suitable habitats of endemic species. In conclusion, plant species endemic to the Caatinga are highly vulnerable to even conservative scenarios of future climate change and may lose much of their climatic envelopes. New protected areas should be located in the northeastern portion of the Caatinga, which hosts a more favorable climate, but is currently exposed to escalating agricultural intensification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture
  • Algorithms
  • Brazil
  • Climate
  • Climate Change*
  • Ecology
  • Forests*
  • Geography
  • Models, Biological
  • Plants*
  • Pollination
  • Probability
  • Reproduction
  • Temperature

Grants and funding

The study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Long-Term Ecological Research Program-PELD/CNPq, grant number: 403770/2012-2 awarded to MT; CNPq/Chamada Universal, grant number: 481755/2013-6 awarded to AVL; PQ/CNPq, grant number: 308832/2014-0 awarded to AVL); the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco - FACEPE (PhD Fellowship to JLSS, grant number: IBPG-0774-2.03/13; Pos-doc grant to OCN, grant number: BCT-0208-2.05/17, and Programa de Apoio a Núcleos de Excelência - PRONEX, grant number: APQ-0138- 2.05/14 awarded to MT); the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (grant code 001 awarded to JLSS, MT and AVL); Royal Society (Newton Mobility Grant NMG/R2/170081 awarded to CAP, MT, AVF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.