A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis

Crit Rev Anal Chem. 2020;50(3):212-225. doi: 10.1080/10408347.2019.1615406. Epub 2019 May 20.

Abstract

Drug and biomolecule analysis with high precision, fast response, not expensive, and user-friendly methods have been very important for developing technology and clinical applications. Electrochemical methods are highly capable for assaying the concentration of electroactive drug or biomolecule and supply excellent knowledge concerning its physical and chemical properties such as electron transfer rates, diffusion coefficients, electron transfer number, and oxidation potential. Electrochemical methods have been widely applied because of their accuracy, sensitivity, cheapness, and can applied on-site determinations of various substances. The progress on electronics has allowed developing reliable, more sensitive and less expensive instrumentations, which have significant contribution in the area of drug development, drug and biomolecule analysis. The developing new sensors for electrochemical analysis of these compounds have growing interest in recent years. Screen-printed based electrodes have a great interest in electrochemical analysis of various drugs and biomolecules due to their easy manufacturing procedure of the electrode allow the transfer of electrochemical laboratory experiments for disposable on-site analysis of some compounds. Paper based electrodes are also fabricated by new technology. They can be preferred due to their easy, cheap, portable, disposable, and offering high sensitivity properties for many application field such as environmental monitoring, food quality control, clinical diagnosis, drug, and biomolecules analysis. In this review, the recent electrochemical drug and biomolecule (DNA, RNA, µRNA, Biomarkers, etc.) studies will be presented that involve new trend disposable electrodes.

Keywords: Electrodes; analysis; biomolecules; drugs; electrochemistry; voltammetry.

Publication types

  • Review

MeSH terms

  • Drug Evaluation / trends*
  • Electrodes / standards*