Assessment of environmentally contaminated sediment using a contact assay with early life stage zebrafish (Danio rerio)

Sci Total Environ. 2019 Apr 1:659:950-962. doi: 10.1016/j.scitotenv.2018.12.265. Epub 2018 Dec 24.

Abstract

Lake Saint-Louis, a shallow fluvial lake near the western tip of the island of Montreal, QC, Canada is an important spawning ground for many species of fish. Sediments in certain areas of the lake are known to be contaminated with high levels of metals and legacy organic chemicals. To improve our understanding of risk to native fish populations, we conducted a study evaluating levels of sediment contamination and potential effects on early life stage fish. Concentrations of PAHs, PCBs, PCDDs and PCDFs were several orders of magnitude higher at two industrial sites (B1 and B2) than at a nearby reference site (IP). Concentrations of 32 metals and metalloids were at least 5-fold higher at B1 and B2 than at IP. Moreover, all available interim sediment quality guidelines (ISQGs) were exceeded at the two contaminated sites, while none were exceeded at the reference site. Biological effects were evaluated using a sediment contact assay. Zebrafish (Danio rerio) embryos were exposed to clean water (control), or to sediment from IP, B1, and B2 until 120 h post fertilization (hpf). Mortality was significantly elevated in fish exposed to the B1, but not the B2 sediment. The frequency of deformities increased with increasing contamination, but this trend was not statistically significant (p > 0.05). Genes that are implicated in the response to PAHs, PCBs, dioxins and furans (cyp1a, cyp1b1, ahr2) were significantly elevated in the 120 hpf larvae exposed to the B1 and B2 sediments. Global DNA methylation, and mRNA expression of genes related to oxidative stress (maft, cat, hmox1, sod2), embryonic development (bmp2b, baf60c), metal exposure (mt2), and DNA repair (gadd45b) were unaffected. Our results suggest that the Beauharnois sector of Lake Saint-Louis is poor quality spawning habitat due to high levels of contamination, and the potential for harmful effects on early life stage fish.

Keywords: Contact assay; DNA methylation; Early life stage; Sediments; Zebrafish; mRNA expression.

MeSH terms

  • Animals
  • Environmental Monitoring*
  • Geologic Sediments / chemistry*
  • Lakes / chemistry*
  • Quebec
  • Toxicity Tests
  • Water Pollutants, Chemical / toxicity*
  • Zebrafish* / metabolism

Substances

  • Water Pollutants, Chemical