Imaging single-cell blood flow in the smallest to largest vessels in the living retina

Elife. 2019 May 14:8:e45077. doi: 10.7554/eLife.45077.

Abstract

Tissue light scatter limits the visualization of the microvascular network deep inside the living mammal. The transparency of the mammalian eye provides a noninvasive view of the microvessels of the retina, a part of the central nervous system. Despite its clarity, imperfections in the optics of the eye blur microscopic retinal capillaries, and single blood cells flowing within. This limits early evaluation of microvascular diseases that originate in capillaries. To break this barrier, we use 15 kHz adaptive optics imaging to noninvasively measure single-cell blood flow, in one of the most widely used research animals: the C57BL/6J mouse. Measured flow ranged four orders of magnitude (0.0002-1.55 µL min-1) across the full spectrum of retinal vessel diameters (3.2-45.8 µm), without requiring surgery or contrast dye. Here, we describe the ultrafast imaging, analysis pipeline and automated measurement of millions of blood cell speeds.

Keywords: OCT; OCTA; Radon transform; adaptive optics; blood flow; computational biology; mouse; physics of living systems; retina; retinal blood flow; systems biology; velocimetry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Mice
  • Mice, Inbred C57BL
  • Optical Imaging / methods*
  • Regional Blood Flow*
  • Retina / physiology*