NiO x Nanoflower Modified Cotton Fabric for UV Filter and Gas Sensing Applications

ACS Appl Mater Interfaces. 2019 Jun 5;11(22):20045-20055. doi: 10.1021/acsami.9b04682. Epub 2019 May 24.

Abstract

Integration of multifunctional nanomaterials with textiles could be a significant value addition to the bright future of the growing technology "Technical Textiles". Development of textiles with antielectromagnetic radiation and in particular antiultraviolet features could be one of the best solutions to the ozone depletion induced ultraviolet pollution of the environment, which is a major concern in the context of surging skin cancer cases. In this background, multifunctional nanoflower structured partial hydroxide nickel oxide (NiO x) was grown on cotton fabric using a chemical bath deposition technique for the development of UV filter and flexible gas/chemical sensor. X-ray diffraction patterns of bare and NiO x modified cotton fabrics confirmed the micro and poly crystalline nature, respectively. Field emission scanning electron microscopic images revealed the growth of 3D green button chrysanthemum flower-like morphology on the surface of cotton fabric. In addition, X-ray photoelectron spectra revealed the presence of nickel, carbon, and oxygen elements in the NiO x modified cotton cellulose. The increase in hydrophobic nature of surface-treated fabric was observed using a goniometer. A differential scanning calorimeter trace for bare and surface modified cotton fabrics exhibited endothermic behavior at the characteristic onset temperature. The results of thermogravimetric analysis revealed the enhanced thermal stability of up to 800 °C for the surface-treated fabric compared to bare cotton. Further, the ultraviolet protection factor (UPF) of the NiO x nanoflower modified cotton fabric was measured using an in vitro method following the AATCC 183:2004 standard using a UV transmittance analyzer. The enhanced absorbance of ultraviolet rays at 388 nm resulted in the UPF of 2000. The chemical/gas sensing features of the surface modified textile samples were investigated using the homemade gas testing chamber. NiO x modified fabric showed a selective response of 12431 toward trimethylamine at room temperature.

Keywords: Gas sensor; NiO Nanostructures; Technical textiles; UV filter.