Convergent Co-option of the Retroviral gag Gene during the Early Evolution of Mammals

J Virol. 2019 Jun 28;93(14):e00542-19. doi: 10.1128/JVI.00542-19. Print 2019 Jul 15.

Abstract

Endogenous retroviruses, records of past retroviral infections, are ubiquitous in vertebrate genomes. On occasion, vertebrate hosts have co-opted retroviral genes for their own biological functions. Here, we perform a phylogenomic survey of retroviral gag gene homologs within vertebrate genomes and identify two ancient co-opted retroviral gag genes, designated wucaishi1 (wcs1) and wucaishi2 (wcs2), in mammals. Conserved synteny and evolutionary analyses suggest that the wcs1 and wcs2 co-options occurred before the origin of modern placental mammals (∼100 million years ago) and before the origin of modern marsupials (∼80 million years ago), respectively. We found that the wcs genes were lost or pseudogenized multiple times during the evolutionary course of mammals. While the wcs1 gene is mainly subject to negative selection in placental mammals (except in Perissodactyla), the wcs2 gene underwent positive selection in marsupials. Moreover, analyses of transcriptome-sequencing (RNA-seq) data suggest that the wcs1 and the wcs2 genes are expressed in a wide range of tissues. The convergent wcs co-option in mammals implies the retroviral gag gene might have been repurposed more frequently than previously thought.IMPORTANCE Retroviruses occasionally can infect host germ lines, forming endogenous retroviruses. Vertebrates, in turn, recruited retroviral genes for their own biological functions, a process formally known as co-option or exaptation. To date, co-opted retroviral gag genes have rarely been reported. In this study, we identified two co-opted retroviral gag genes, designated wucaishi1 (wcs1) and wucaishi2 (wcs2), in mammals. The co-option of wcs1 and wcs2 occurred before the origin of modern placentals and before the origin of modern marsupials, respectively. Our study indicates that retroviral gag gene co-option might have occurred more frequently than previously thought during the evolutionary course of vertebrates.

Keywords: co-option; endogenous retrovirus; paleovirology; phylogenetics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Endogenous Retroviruses / genetics*
  • Evolution, Molecular*
  • Gene Products, gag / genetics*
  • Humans
  • Marsupialia / virology

Substances

  • Gene Products, gag