Deep learning for photoacoustic tomography from sparse data

Inverse Probl Sci Eng. 2018 Sep 11;27(7):987-1005. doi: 10.1080/17415977.2018.1518444. eCollection 2019.

Abstract

The development of fast and accurate image reconstruction algorithms is a central aspect of computed tomography. In this paper, we investigate this issue for the sparse data problem in photoacoustic tomography (PAT). We develop a direct and highly efficient reconstruction algorithm based on deep learning. In our approach, image reconstruction is performed with a deep convolutional neural network (CNN), whose weights are adjusted prior to the actual image reconstruction based on a set of training data. The proposed reconstruction approach can be interpreted as a network that uses the PAT filtered backprojection algorithm for the first layer, followed by the U-net architecture for the remaining layers. Actual image reconstruction with deep learning consists in one evaluation of the trained CNN, which does not require time-consuming solution of the forward and adjoint problems. At the same time, our numerical results demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative approaches for PAT from sparse data.

Keywords: 45Q05; 65R32; 92C55; Photoacoustic tomography; convolutional neural networks; deep learning; image reconstruction; inverse problems; sparse data.