Current and residual phosphorous availability from compost in a ryegrass pot test

Sci Total Environ. 2019 Aug 10:677:250-262. doi: 10.1016/j.scitotenv.2019.04.349. Epub 2019 Apr 25.

Abstract

Compost can provide nitrogen (N) and especially phosphorous (P) available for plant growth, thus representing a potential alternative to chemical P-fertilizers a non-renewable resource. However, little is known about their residual capacity to provide plant-available P. In this study four compost: a green waste compost (GWC), one from anaerobically-digested bio-waste (DC), one from sewage sludge (SSC), and one from bio-waste (BWC), were compared (10 and 20 Mg VS ha-1) in a ryegrass pot test (112 days), for their N- and P-relative mineral fertilizer equivalence (MFE; %) vs. a chemical fertilizer (NPK). After the test period, the exploited treatments were tested for their MFE during an additional ryegrass growth cycle (112 days) in an N-rich environment (N+). After 112 days, the pot test showed that DC and SSC produced dry biomass in the same range as did NPK, attaining the best N-MFE (80-100%) and P-MFE (100-125%), whereas GWC and BWC performed poorly (60-80 and 80-90%; N-MFE and P-MFE). At the end of the first growth cycle, DC and SSC still showed relevant Olsen-P (20-30 mg kg-1). This was reflected in the best ryegrass P-MFE in DC and SSC at the end of the second growth cycle (N+), after 224 days (100-110%), whereas BWC and GWC poorly performed (90-95%). DC and SSC may therefore represent valuable sources of N available for plant nutrition in the short term, and also represent medium-term valuable P sources, alternative to rock phosphate P fertilizers. This promising approach need further field-scale investigation to confirm the medium-long term capacity of composts to be alternative to rock phosphate P fertilizers.

Keywords: Compost; Phosphorus; Residual fertility.

MeSH terms

  • Biological Availability
  • Composting*
  • Fertilizers / analysis*
  • Lolium / growth & development
  • Lolium / metabolism*
  • Phosphorus / metabolism*

Substances

  • Fertilizers
  • Phosphorus