Modifications of Polymeric Membranes Used in Guided Tissue and Bone Regeneration

Polymers (Basel). 2019 May 2;11(5):782. doi: 10.3390/polym11050782.

Abstract

Guided tissue/bone regeneration (GTR/GBR) is a widely used procedure in contemporary dentistry. To achieve the required results of tissue regeneration, soft tissues that reproduce quickly are separated from the slow-growing bone tissue by membranes. Many types of membranes are currently in use, but none of them fulfil all of the desired features. To address this issue, further research on developing new membranes with better separation characteristics, such as membrane modification, is needed. Many of the current innovative modified materials are still in the phase of in vitro and experimental studies. A collective review on new trends in membrane modification to GTR/GBR is needed due to the widespread use of polymeric membranes and the constant development in the field of dentistry. Therefore, the aim of this review was to present an overview of polymeric membrane modifications to the GTR/GBR reported in the literature. The authors searched databases, including PubMed, SCOPUS, Web of Science, and OVID, for relevant studies that were published during 1999-2019. The following keywords were used: guided tissue regeneration, membranes, coating, and modification. A total of 17 papers were included in this review. Furthermore, the articles were divided into three groups that were based on the type of membrane modification: antibiotic coating, ion-use modifications, and others modifications, thus providing an overview of current existing knowledge in the field and encouraging further research. The results of included studies on modified barrier membranes seem to be promising, both in terms of safety and benefits for patients. However, modifications result in a large spectrum of effects. Further clinical studies are needed on a large group of patients to clearly confirm the effects that were observed in animal and in vitro studies.

Keywords: coating; guided bone regeneration; guided tissue regeneration; membrane; modification.

Publication types

  • Review