Role of calcium in AMF-mediated alleviation of the adverse impacts of cadmium stress in Bassia indica [Wight] A.J. Scott

Saudi J Biol Sci. 2019 May;26(4):828-838. doi: 10.1016/j.sjbs.2016.11.003. Epub 2016 Nov 10.

Abstract

The aim of this study was to evaluate cadmium stress induced changes in the growth, lipid peroxidation and antioxidant activity of Bassia indica associated with arbuscular mycorrhizal fungi (AMF) and their amelioration by calcium application. Cadmium stress can cause alterations in the physiological and biochemical processes in plants. A calcium application combined with an AMF treatment resulted in the reduction of lipid peroxidation and the production of hydrogen peroxide, thereby mediating the mitigation of cadmium induced oxidative stress. The activity of antioxidant enzymes increased with cadmium application, whereas AMF inoculation combined with a calcium application further enhanced their activity. An increase in the content of non-enzymatic antioxidants such as ascorbate, reduced glutathione (GSH), oxidized glutathione (GSSG) and S-nitrosoglutathione (GSNO) in AMF-inoculated and calcium-treated plants further suggests their role in strengthening the antioxidant defense system that results in maintained growth. The application of calcium combined with the AMF treatment caused a significant reduction in lipid peroxidation and in the production of hydrogen peroxide, thereby mediating the mitigation of the cadmium induced oxidative stress. Increased proline accumulation was clearly evident in stressed plants, and the calcium application as well as the AMF inoculation further induced proline synthesis, thereby providing efficient protection against cadmium stress by increasing the maintenance of the systemic resistance criteria.

Keywords: AMF; Acquired systemic resistance; Bassia indica; Cadmium; Calcium.