A Turnip Mosaic Virus Determinant of Systemic Necrosis in Nicotiana benthamiana and a Novel Resistance-Breaking Determinant in Chinese Cabbage Identified from Chimeric Infectious Clones

Phytopathology. 2019 Sep;109(9):1638-1647. doi: 10.1094/PHYTO-08-18-0323-R. Epub 2019 Aug 5.

Abstract

Infectious clones of Korean turnip mosaic virus (TuMV) isolates KIH1 and HJY1 share 88.1% genomic nucleotides and 96.4% polyprotein amino acid identity, and they induce systemic necrosis or mild mosaic, respectively, in Nicotiana benthamiana. Chimeric constructs between these isolates exchanged the 5', central, and 3' domains of KIH1 (K) and HJY1 (H), where the order of the letters indicates the origin of these domains. KIH1 and chimeras KHH and KKH induced systemic necrosis, whereas HJY1 and chimeras HHK, HKK, and HKH induced mild symptoms, indicating the determinant of necrosis to be within the 5' 3.9 kb of KIH1; amino acid identities of the included P1, Helper component protease, P3, 6K1, and cylindrical inclusion N-terminal domain were 90.06, 98.91, 93.80, 100, and 100%, respectively. Expression of P1 or P3 from a potato virus X vector yielded symptom differences only between P3 of KIH1 and HJY1, implicating a role for P3 in necrosis in N. benthamiana. Chimera KKH infected Brassica rapa var. pekinensis 'Norang', which was resistant to both KIH1 and HJY1, indicating that two separate TuMV determinants are required to overcome the resistance. Ability of diverse TuMV isolates, chimeras, and recombinants to overcome resistance in breeding lines may allow identification of novel resistance genes.

Keywords: full-length cDNA infectious clones; pathogenicity; phylogenetic analysis.

MeSH terms

  • Brassica* / virology
  • Chimera
  • Nicotiana* / virology
  • Plant Diseases / microbiology
  • Potyvirus

Supplementary concepts

  • Turnip mosaic virus