Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments

ACS Nano. 2019 May 28;13(5):5703-5711. doi: 10.1021/acsnano.9b01094. Epub 2019 May 6.

Abstract

Aerogel with low density, high porosity, and large surface area is a promising structure for the next generation of high-performance thermal insulation fibers and textiles. However, aerogel fibers suffer from weak mechanical properties or complex fabricating processes. Herein, a facile wet-spinning approach for fabricating nanofibrous Kevlar (KNF) aerogel threads ( i.e., aerogel fibers) with high thermal insulation under extreme environments is demonstrated. The aerogel fibers made from nanofibrous Kevlar render a high specific surface area (240 m2/g) and wide-temperature thermal stability. The flexible and strong KNF aerogel fibers are woven into textiles to illustrate the excellent thermal insulation property under extreme temperature (-196 or +300 °C) and at room temperature. COMSOL simulation is applied to calculate the thermal conductivity of a single aerogel fiber and find an effective way to improve the thermal insulation property of the aerogel fiber. Furthermore, a series of functionalized fibers or textiles based on KNF aerogel fibers, such as phase-change fibers, conductive fibers, and hydrophobic textiles, have been prepared. Such KNF aerogel fibers represent a promising direction for the next generation of high-performance fibrous thermal-insulation materials.

Keywords: aerogel threads; extreme environments; nanofibrous Kevlar; simulation analysis; thermal insulation.