Aloperine induces apoptosis and G2/M cell cycle arrest in hepatocellular carcinoma cells through the PI3K/Akt signaling pathway

Phytomedicine. 2019 Aug:61:152843. doi: 10.1016/j.phymed.2019.152843. Epub 2019 Jan 28.

Abstract

Background: Hepatocellular carcinoma (HCC) ranks third among the most common causes of cancer-related deaths worldwide. The chemotherapy for HCC is still insufficient, so far. In searching for effective anti-HCC agents from traditional Chinese medicine, we discovered that aloperine (ALO), a quinolizidine alkaloid from Sophora alopecuroides L., exerts anti-HCC activities. However, the effects of ALO on HCC have been rarely studied, and its underlying mechanisms remain unknown.

Purpose: This study aims to evaluate the anti-HCC activities of ALO and explore its underlying mechanisms.

Methods: MTT assay and colony formation assay were used to investigate the anti-proliferative effects of ALO on human HCC Hep3B and Huh7 cells. Hoechst 33258 staining was used to observe the morphological changes of cells after ALO treatment. Flow cytometry was used to analyze apoptosis induction, the collapse of the mitochondrial membrane potential and cell cycle distribution. Western blotting was used to examine the expression levels of proteins associated with apoptosis and cell cycle arrest, and key proteins in the PI3K/Akt signaling pathway. Small interfering RNA (siRNA) transfection was used to investigate the role of Akt in ALO-induced apoptosis and cell cycle arrest. Zebrafish tumor model was used to evaluate the anti-HCC effects of ALO in vivo.

Results: ALO inhibited the proliferation of Hep3B and Huh7 cells. ALO induced apoptosis in HCC cells, which was accompanied by the loss of mitochondrial potential, the release of cytochrome c into cytosol, as well as the increased cleavages of caspase-9, caspase-3 and PARP. Moreover, ALO induced G2/M cell cycle arrest by downregulating the expression levels of cdc25C, cdc2 and cyclin B1. In addition, ALO inhibited activation of the PI3K/Akt signaling pathway by decreasing the expression levels of p110α, p85, Akt and p-Akt (Ser473). Further study showed that inhibition of Akt by siRNA augmented ALO-mediated apoptosis and G2/M cell cycle arrest in HCC cells. Critically, ALO inhibited the growth of Huh7 cells in vivo.

Conclusion: We first demonstrated that ALO induced apoptosis and G2/M cell cycle arrest in HCC cells through inhibition of the PI3K/Akt signaling pathway. This study provides a rationale for ALO as a potential chemotherapeutic agent for HCC.

Keywords: Aloperine; Apoptosis; G2/M cell cycle arrest; Hepatocellular carcinoma; PI3K/Akt signaling pathway.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Cell Cycle Checkpoints / drug effects
  • Cell Line, Tumor
  • Embryo, Nonmammalian
  • Humans
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Membrane Potential, Mitochondrial / drug effects
  • Phosphatidylinositol 3-Kinases / metabolism
  • Piperidines / pharmacology*
  • Proto-Oncogene Proteins c-akt / metabolism
  • Quinolizidines
  • Xenograft Model Antitumor Assays
  • Zebrafish / embryology

Substances

  • Antineoplastic Agents
  • Piperidines
  • Quinolizidines
  • aloperine
  • Proto-Oncogene Proteins c-akt