Enhancing the photocatalytic activity of ZnSn(OH)6 achieved by gradual sulfur doping tactics

Nanoscale. 2019 May 16;11(19):9444-9456. doi: 10.1039/c9nr01103j.

Abstract

To solve the intrinsic deficiency inherited from the large band gap of ZnSn(OH)6 (ZSH), a gradual sulfur doping strategy is first proposed here to expand the optical absorption range, improve the separation efficiency of photogenerated electron-hole pairs, and thus enhance the photocatalytic activity. It is demonstrated that the distribution of sulfur in the flower-like ZSH (the sulfur doped sample is denoted as S-ZSH) tends to be largest on the outer most surface and becomes smaller towards the interior. The S-ZSH therefore has a gradual bandgap structure that is beneficial for transferring photogenerated charge carriers from the interior to the surface, which will greatly enhance the utilization of photoelectrons. As a result, the visible light photocurrent density of S-ZSH and the photocatalytic degradation rate of rhodamine (RhB) are about 5 and 10 times higher than with pristine ZSH, respectively.