Characterization of Functional Primary Cilia in Human Induced Pluripotent Stem Cell-Derived Neurons

Neurochem Res. 2019 Jul;44(7):1736-1744. doi: 10.1007/s11064-019-02806-4. Epub 2019 Apr 29.

Abstract

Recent advances in human induced pluripotent stem cells (hiPSCs) offer new possibilities for biomedical research and clinical applications. Neurons differentiated from hiPSCs may be promising tools to develop novel treatment methods for various neurological diseases. However, the detailed process underlying functional maturation of hiPSC-derived neurons remains poorly understood. Here, we analyze the developmental architecture of hiPSC-derived cortical neurons, iCell GlutaNeurons, focusing on the primary cilium, a single sensory organelle that protrudes from the surface of most growth-arrested vertebrate cells. To characterize the neuronal cilia, cells were cultured for various periods and evaluated immunohistochemically by co-staining with antibodies against ciliary markers Arl13b and MAP2. Primary cilia were detected in neurons within days, and their prevalence and length increased with increasing days in culture. Treatment with the mood stabilizer lithium led to primary cilia length elongation, while treatment with the orexigenic neuropeptide melanin-concentrating hormone caused cilia length shortening in iCell GlutaNeurons. The present findings suggest that iCell GlutaNeurons develop neuronal primary cilia together with the signaling machinery for regulation of cilia length. Our approach to the primary cilium as a cellular antenna can be useful for both assessment of neuronal maturation and validation of pharmaceutical agents in hiPSC-derived neurons.

Keywords: G protein-coupled receptor; Human induced pluripotent stem cell-derived neuron; Lithium; Melanin-concentrating hormone receptor 1; Primary cilia; iCell GlutaNeuron.

MeSH terms

  • ADP-Ribosylation Factors / immunology
  • Adenylyl Cyclases / immunology
  • Animals
  • Antibodies / immunology
  • Cell Line
  • Cilia / drug effects
  • Cilia / metabolism*
  • Cilia / ultrastructure*
  • Hippocampus / cytology
  • Hippocampus / drug effects
  • Humans
  • Hypothalamic Hormones / pharmacology
  • Immunohistochemistry
  • Induced Pluripotent Stem Cells / cytology*
  • Lithium / pharmacology
  • Melanins / pharmacology
  • Microtubule-Associated Proteins / immunology
  • Neurogenesis / physiology
  • Neurons / cytology*
  • Neurons / drug effects
  • Pituitary Hormones / pharmacology
  • Rats, Wistar
  • Receptors, Somatostatin / immunology

Substances

  • Antibodies
  • Hypothalamic Hormones
  • MAP2 protein, human
  • MCHR1 protein, human
  • MCHR1 protein, rat
  • Melanins
  • Microtubule-Associated Proteins
  • Pituitary Hormones
  • Receptors, Somatostatin
  • melanin-concentrating hormone
  • Lithium
  • ADP-Ribosylation Factors
  • ARL13B protein, human
  • Adenylyl Cyclases
  • adenylate cyclase 3