Design, synthesis and docking studies of benzimidazole derivatives as potential EGFR inhibitors

Eur J Med Chem. 2019 Jul 1:173:240-249. doi: 10.1016/j.ejmech.2019.04.012. Epub 2019 Apr 9.

Abstract

In this study, a series of benzimidazoles bearing thiosemicarbazide chain or triazole and thiadiazole rings were designed and synthesized. Crystal and molecular structure of the compound 5c has been characterized by single crystal X-ray crystallographic analysis. EGFR kinase inhibitory potencies of synthesized compounds were compared with erlotinib in vitro and most of the compounds exhibited significant activities. Cell culture studies were also carried out for selected compounds and 12b was found to be the most active compound. To understand the binding mode of synthesized benzimidazoles, three compounds (12b, 16, 16c) were selected and placed on the binding site of EGFR tyrosine kinase based on their kinase inhibitor potencies and cell culture studies. Docking study indicated that compound 12b showed two-hydrogen bonding interactions with residues of LYS721 and THR830 at the binding pocket.

Keywords: Benzimidazole; Docking; EGFR inhibitory activity; Thiadiazole; Thiosemicarbazide; Triazole; X-ray.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Benzimidazoles / chemical synthesis
  • Benzimidazoles / chemistry
  • Benzimidazoles / pharmacology*
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / metabolism
  • Humans
  • Hydrogen Bonding
  • MCF-7 Cells
  • Molecular Docking Simulation
  • Molecular Structure
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents
  • Benzimidazoles
  • Protein Kinase Inhibitors
  • benzimidazole
  • EGFR protein, human
  • ErbB Receptors