The Function(s) of Sleep

Handb Exp Pharmacol. 2019:253:3-34. doi: 10.1007/164_2018_140.

Abstract

Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.

Keywords: Glycogen; Glymphatic system; Hippocampal place cells; Learning; Memory; Ocular dominance plasticity; Synaptic homeostasis; Synaptic plasticity.

MeSH terms

  • Animals
  • Brain / physiology
  • Learning
  • Memory
  • Neuronal Plasticity* / physiology
  • Sleep* / physiology