Highlighting spin selectivity properties of chiral electrode surfaces from redox potential modulation of an achiral probe under an applied magnetic field

Chem Sci. 2019 Jan 4;10(9):2750-2757. doi: 10.1039/c8sc04126a. eCollection 2019 Mar 7.

Abstract

Impressive spin-related effects are observed in cyclic voltammetry (CV) experiments performed under an applied magnetic field on a non-ferromagnetic electrode modified with a thin electroactive oligothiophene film, either "inherently chiral" or featuring chiral pendants with stereogenic centres. When flipping the magnet's north/south orientation, the CV peaks of two achiral, chemically reversible Fe(iii)/Fe(ii) redox couples in aqueous or organic solution undergo impressive potential shifts (up to nearly 0.5 V depending on protocol conditions), specularly by changing the film's (R)- or (S)-configuration. The magnitude of the potential shift decreases upon increasing both the polymer film thickness and the distance between the permanent magnet and the electrode surface. Such unprecedented spin-related redox potential modulation, obtained in the absence of a magnetic electrode acting as a spin injector, provides striking evidence (as well as an attractive evaluation criterion) of the spin selectivity properties of chiral thin films.