Polyvinylpyrrolidone Nanofibers Encapsulating an Anhydrous Preparation of Fluorescent SiO₂⁻Tb3+ Nanoparticles

Nanomaterials (Basel). 2019 Apr 2;9(4):510. doi: 10.3390/nano9040510.

Abstract

A novel anhydrous preparation of silica (SiO₂)-encapsulated terbium (Tb3+) complex nanoparticles has been investigated. The SiO₂-Tb3+ nanoparticles are incorporated in electrospun polyvinylpyrrolidone hybrid nanofibers. Transmission electron microscopy confirms that Tb3+ complexes are uniformly and stably encapsulated in or carried by nanosilica. The influence of pH on the fluorescence of Tb3+ complexes is discussed. The properties, composition, structure, and luminescence of the resulting SiO₂⁻Tb3+ hybrid nanoparticles are investigated in detail. There is an increase in the fluorescence lifetime of SiO₂⁻Tb3+ nanoparticles and SiO₂⁻Tb3+/polyvinylpyrrolidone (PVP) hybrid nanofibers compared with the pure Tb3+ complexes. Due to the enhanced optical properties, the fluorescent hybrid nanofibers have potential applications as photonic and photoluminescent materials.

Keywords: electrospinning; fluorescence; lifetime; silica; terbium complex.