Towards an Optimal Pressure Tap Design for Fluid-Flow Characterisation at Microscales

Materials (Basel). 2019 Apr 2;12(7):1086. doi: 10.3390/ma12071086.

Abstract

Measuring fluid pressure in microchannels is difficult and constitutes a challenge to even the most experienced of experimentalists. Currently, to the best of the authors' knowledge, no optimal solution are being used for the design of pressure taps, nor guidelines concerning their shape and its relation with the accuracy of the readings. In an attempt to address this issue, a parametric study was devised to evaluate the performance of different pressure tap designs, 18 in total. These were obtained by combining three shape parameters: sub-channel width (w) and sub-channel-tap radius (R) or angle (α), while having the sub-channel length kept constant. For each configuration, pressure drop measurements were carried out along several lengths of a straight microfluidic rectangular channel and later compared to an analytical solution. The microchannels were fabricated out of PDMS using standard soft-lithography techniques, pressure drop was measured with differential pressure sensors, the test fluid was DI water and the flow conditions varied from creeping flow up to R e c ∼100. Pressure taps, having smooth contours (characterised by the radius R) and a sub-channel width (w) of 108 μ m , performed the best with results from that of radius R = 50 μ m only falling short of the theory by a mere ∼ 5 % .

Keywords: microchannels; microfluidics; pressure drop; pressure taps.