X-ray studies of the transformation from high- to low-density amorphous water

Philos Trans A Math Phys Eng Sci. 2019 Jun 3;377(2146):20180164. doi: 10.1098/rsta.2018.0164.

Abstract

Here we report about the structural evolution during the conversion from high-density amorphous ices at ambient pressure to the low-density state. Using high-energy X-ray diffraction, we have monitored the transformation by following in reciprocal space the structure factor SOO( Q) and derived in real space the pair distribution function gOO( r). Heating equilibrated high-density amorphous ice (eHDA) at a fast rate (4 K min-1), the transition to the low-density form occurs very rapidly, while domains of both high- and low-density coexist. On the other hand, the transition in the case of unannealed HDA (uHDA) and very-high-density amorphous ice is more complex and of continuous nature. The direct comparison of eHDA and uHDA indicates that the molecular structure of uHDA contains a larger amount of tetrahedral motives. The different crystallization behaviour of the derived low-density amorphous states is interpreted as emanating from increased tetrahedral coordination present in uHDA. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.

Keywords: amorphous ice; ice; phase transition; water.