Pseudocontact shifts and paramagnetic susceptibility in semiempirical and quantum chemistry theories

J Chem Phys. 2019 Apr 14;150(14):144101. doi: 10.1063/1.5037428.

Abstract

Pseudocontact shifts are traditionally described as a function of the anisotropy of the paramagnetic susceptibility tensor, according to the semiempirical theory mainly developed by Kurland and McGarvey [J. Magn. Reson. 2, 286-301 (1970)]. The paramagnetic susceptibility tensor is required to be symmetric. Applying point-dipole approximation to the quantum chemistry theory of hyperfine shift, pseudocontact shifts are found to scale with a non-symmetric tensor that differs by a factor gT/ge from the paramagnetic susceptibility tensor derived within the semiempirical framework. We analyze the foundations of the Kurland-McGarvey pseudocontact shift expression and recall that it is inherently based on the Russell-Saunders (LS) coupling approximation for the spin-orbit coupling. We show that the difference between the semiempirical and quantum chemistry pseudocontact shift expressions arises directly from the different treatment of the orbital contribution to the hyperfine coupling.