Interpreting the Dynamics of Binding Interactions of snRNA and U1A Using a Coarse-Grained Model

Biophys J. 2019 May 7;116(9):1625-1636. doi: 10.1016/j.bpj.2019.03.008. Epub 2019 Mar 21.

Abstract

The binding interactions of small nuclear RNAs (snRNA) and the associated protein factors are critical to the function of spliceosomes in alternatively splicing primary RNA transcripts. Although molecular dynamics simulations are a powerful tool to interpret the mechanism of biological processes, the atomic-level simulations are, however, too expensive and with limited accuracy for the large-size systems, such as snRNA-protein complexes. We extend the coarse-grained Gaussian network model, which models the RNA-protein complexes as a harmonic chain of Cα, P, and O4' atoms, to investigating the impact of the snRNA-binding interaction on the dynamic stability of the human U1A protein, which is a major component of the spliceosomal U1 small nuclear ribonucleoprotein particle. The results reveal that the first and third loops and the C-terminal helix regions of the U1A domain undergo a significant loss of flexibility upon the RNA binding due to the forming of mostly electrostatic and hydrogen bond interactions with RNA 5' stem and loop. By examining the residues whose mutations significantly change the binding free energy between U1A and snRNA, the Gaussian network model-based calculations show that not only the residues at the binding sites that are traditionally considered to play a major role in U1A-RNA association but also those residues that are far away from the RNA-binding interface can participate in the long-range allosteric signal transmission; these calculations are quantitatively consistent with the data observed in the recent snRNA binding experiments. The study demonstrates a useful avenue to utilize the simplified elastic network model to investigate the dynamics characteristics of the biologically important macromolecular interactions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Feasibility Studies
  • Models, Molecular*
  • Movement
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • RNA, Small Nuclear / metabolism*
  • Ribonucleoprotein, U1 Small Nuclear / chemistry
  • Ribonucleoprotein, U1 Small Nuclear / metabolism*
  • Thermodynamics

Substances

  • RNA, Small Nuclear
  • Ribonucleoprotein, U1 Small Nuclear
  • U1A protein