Effects of Amino-Functionalized Carbon Nanotubes on the Crystal Structure and Thermal Properties of Polyacrylonitrile Homopolymer Microspheres

Polymers (Basel). 2017 Aug 2;9(8):332. doi: 10.3390/polym9080332.

Abstract

Amino-functionalized multi-walled carbon nanotube (amino-CNT)/polyacrylonitrile (PAN) microspheres with diameter of about 300⁻400 nm were prepared by in situ polymerization under aqueous solution. The morphology, crystal structure, and thermal properties of amino-CNTs on a PAN homopolymer were investigated by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, X-ray diffraction, and differential scanning calorimetry. The results showed that the amino-CNTs had a significant influence on the morphology of microspheres, and the PAN matrix were grafted onto the surface of amino-CNTs with interfacial bonding between them. The XRD studies showed that the crystal size of amino-CNT/PAN microspheres with lower crystallinity was bigger than in the control PAN homopolymer. The analysis of thermal properties indicated that the amino-CNT/PAN microspheres with lower glass transition temperature had a lower initial temperature and velocity of evolving heat during the exothermic processing as compared with the PAN homopolymer. These results suggested that the incorporation of amino-CNTs into the PAN homopolymer matrix was beneficial for controlling the heat released during the stabilization processing.

Keywords: amino functionalized CNTs; in situ polymerization; microspheres; polyacrylonitrile.