Flexible Polymer Device Based on Parylene-C with Memory and Temperature Sensing Functionalities

Polymers (Basel). 2017 Jul 26;9(8):310. doi: 10.3390/polym9080310.

Abstract

Polychloro-para-xylylene (parylene-C) is a flexible and transparent polymer material which has excellent chemical stability and high biocompatibility. Here we demonstrate a polymer device based on single-component parylene-C with memory and temperature sensing functionalities. The device shows stable bipolar resistive switching behavior, remarkable storage window (>10⁴), and low operation voltages, exhibiting great potential for flexible resistive random-access memory (RRAM) applications. The I-V curves and conductive atomic force microscopy (CAFM) results verify the metallic filamentary-type switching mechanism based on the formation and dissolution of a metal bridge related to the redox reaction of the active metal electrode. In addition, due to the metallic properties of the low-resistance state (LRS) in the polymer device, the resistance in the LRS exhibits a nearly linear relationship at the temperature regime between 25 °C and 100 °C. With a temperature coefficient of resistance (TCR) of 2.136 × 10-3/°C, the device is also promising for the flexible temperature sensor applications.

Keywords: flexible; resistive random-access memory; temperature sensor; wearable devices.