Reaction between Peroxy and Alkoxy Radicals Can Form Stable Adducts

J Phys Chem Lett. 2019 May 2;10(9):2051-2057. doi: 10.1021/acs.jpclett.9b00405. Epub 2019 Apr 12.

Abstract

Peroxy (RO2) and alkoxy (RO) radicals are prototypical intermediates in any hydrocarbon oxidation. In this work, we use computational methods to (1) study the mechanism and kinetics of the RO2 + OH reaction for previously unexplored "R" structures (R = CH(O)CH2 and R = CH3C(O)) and (2) investigate a hitherto unaccounted channel of molecular growth, R'O2 + RO. On the singlet surface, these reactions rapidly form ROOOH and R'OOOR adducts, respectively. The former decomposes to RO + HO2 and R(O)OH + O2 products, while the main decomposition channel for the latter is back to the reactant radicals. Decomposition rates of R'OOOR adducts varied between 103 and 0.015 s-1 at 298 K and 1 atm. The most long-lived R'OOOR adducts likely account for some fraction of the elemental compositions detected in the atmosphere that are commonly assigned to stable covalently bound dimers.