Boron-oxygen complex yields n-type surface layer in semiconducting diamond

Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7703-7711. doi: 10.1073/pnas.1821612116. Epub 2019 Apr 1.

Abstract

Diamond is a wide-bandgap semiconductor possessing exceptional physical and chemical properties with the potential to miniaturize high-power electronics. Whereas boron-doped diamond (BDD) is a well-known p-type semiconductor, fabrication of practical diamond-based electronic devices awaits development of an effective n-type dopant with satisfactory electrical properties. Here we report the synthesis of n-type diamond, containing boron (B) and oxygen (O) complex defects. We obtain high carrier concentration (∼0.778 × 1021 cm-3) several orders of magnitude greater than previously obtained with sulfur or phosphorous, accompanied by high electrical conductivity. In high-pressure high-temperature (HPHT) boron-doped diamond single crystal we formed a boron-rich layer ∼1-1.5 μm thick in the {111} surface containing up to 1.4 atomic % B. We show that under certain HPHT conditions the boron dopants combine with oxygen defects to form B-O complexes that can be tuned by controlling the experimental parameters for diamond crystallization, thus giving rise to n-type conduction. First-principles calculations indicate that B3O and B4O complexes with low formation energies exhibit shallow donor levels, elucidating the mechanism of the n-type semiconducting behavior.

Keywords: boron; defects; diamond; high pressure; semiconductor.