Molecular-Level Insights into the Microstructure of a Hydrated and Nanoconfined Deep Eutectic Solvent

J Phys Chem B. 2019 Apr 18;123(15):3359-3371. doi: 10.1021/acs.jpcb.9b01603. Epub 2019 Apr 9.

Abstract

Despite the recent advancements in the field of deep eutectic solvents (DESs), their high viscosity often prevents practical applications. A versatile strategy to overcome this problem is either to add a co-solvent or to confine the DES inside a nanoscaled self-organized system. This work assesses the microstructures of a hydrated and nanoconfined DES comprising benzyltripropylammonium chloride [BTPA]Cl and ethylene glycol (EG). They act as a hydrogen-bond acceptor and a donor, respectively. The hydrogen bonding between [BTPA]Cl and EG in the DES (i.e., BTEG) and the molecular states of water in the hydrated BTEG were studied by Raman spectroscopy. The results show different hydrogen-bonding associations between water-water and water-BTEG or EG molecules. In addition, we investigated the confinement effects of BTEG in a Polysorbate 80 (Tween-80)/cyclohexane reverse micellar (RM) system. The results are compared with those of an ionic liquid-encapsulated RM system. The formation, bonding characteristics, and thermal stability of the RM droplets were studied by solubilization, dynamic light scattering, rheology, and Raman spectroscopy experiments. Furthermore, it is shown that hydrogen bonding between the DES and the surfactant leads to a stable RM system. Interestingly, the viscosity of the RM system is significantly lower than that of the neat DES suggesting that DESs have a much wider practical applicability in the form of RMs.