A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine

Sci Rep. 2019 Mar 27;9(1):5260. doi: 10.1038/s41598-019-41522-5.

Abstract

In Africa, cervical cancer and placental malaria (PM) are a major public health concern. There is currently no available PM vaccine and the marketed Human Papillomavirus (HPV) vaccines are prohibitively expensive. The idea of a combinatorial HPV and PM vaccine is attractive because the target population for vaccination against both diseases, adolescent girls, would be overlapping in Sub-Saharan Africa. Here we demonstrate proof-of-concept for a combinatorial vaccine utilizing the AP205 capsid-based virus-like particle (VLP) designed to simultaneously display two clinically relevant antigens (the HPV RG1 epitope and the VAR2CSA PM antigen). Three distinct combinatorial VLPs were produced displaying one, two or five concatenated RG1 epitopes without obstructing the VLP's capacity to form. Co-display of VAR2CSA was achieved through a split-protein Tag/Catcher interaction without hampering the vaccine stability. Vaccination with the combinatorial vaccine(s) was able to reduce HPV infection in vivo and induce anti-VAR2CSA IgG antibodies, which inhibited binding between native VAR2CSA expressed on infected red blood cells and chondroitin sulfate A in an in vitro binding-inhibition assay. These results show that the Tag/Catcher AP205 VLP system can be exploited to make a combinatorial vaccine capable of eliciting antibodies with dual specificity.

MeSH terms

  • Animals
  • Female
  • HEK293 Cells
  • Humans
  • Immunoglobulins / metabolism
  • Malaria Vaccines / immunology*
  • Malaria Vaccines / therapeutic use
  • Mice
  • Mice, Inbred BALB C
  • Neutralization Tests
  • Papillomavirus Infections / immunology
  • Papillomavirus Infections / metabolism
  • Papillomavirus Infections / prevention & control
  • Papillomavirus Vaccines / immunology*
  • Papillomavirus Vaccines / therapeutic use
  • Vaccines, Virus-Like Particle / immunology*

Substances

  • Immunoglobulins
  • Malaria Vaccines
  • Papillomavirus Vaccines
  • Vaccines, Virus-Like Particle