Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance

Biochemistry. 2019 Apr 9;58(14):1905-1917. doi: 10.1021/acs.biochem.8b01241. Epub 2019 Mar 27.

Abstract

CRISPR-Cas systems are RNA-guided nucleases that provide adaptive immune protection for bacteria and archaea against intruding genomic materials. The programmable nature of CRISPR-targeting mechanisms has enabled their adaptation as powerful genome engineering tools. Cas9, a type II CRISPR effector protein, has been widely used for gene-editing applications owing to the fact that a single-guide RNA can direct Cas9 to cleave desired genomic targets. An understanding of the role of different domains of the protein and guide RNA-induced conformational changes of Cas9 in selecting target DNA has been and continues to enable development of Cas9 variants with reduced off-targeting effects. It has been previously established that an arginine-rich bridge helix (BH) present in Cas9 is critical for its activity. In the present study, we show that two proline substitutions within a loop region of the BH of Streptococcus pyogenes Cas9 impair the DNA cleavage activity by accumulating nicked products and reducing target DNA linearization. This in turn imparts a higher selectivity in DNA targeting. We discuss the probable mechanisms by which the BH-loop contributes to target DNA recognition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • CRISPR-Associated Protein 9 / chemistry
  • CRISPR-Associated Protein 9 / genetics
  • CRISPR-Associated Protein 9 / metabolism*
  • CRISPR-Cas Systems*
  • DNA / chemistry
  • DNA / genetics
  • DNA / metabolism
  • DNA Cleavage
  • Gene Editing / methods*
  • Models, Molecular
  • Mutation, Missense
  • Nucleic Acid Conformation
  • Proline / chemistry
  • Proline / genetics
  • Proline / metabolism*
  • Protein Structure, Secondary
  • RNA, Guide, CRISPR-Cas Systems / chemistry
  • RNA, Guide, CRISPR-Cas Systems / genetics
  • RNA, Guide, CRISPR-Cas Systems / metabolism*

Substances

  • Bacterial Proteins
  • RNA, Guide, CRISPR-Cas Systems
  • DNA
  • Proline
  • CRISPR-Associated Protein 9
  • Cas9 endonuclease Streptococcus pyogenes