Role of epaQ, a Previously Uncharacterized Enterococcus faecalis Gene, in Biofilm Development and Antimicrobial Resistance

J Bacteriol. 2019 Aug 22;201(18):e00078-19. doi: 10.1128/JB.00078-19. Print 2019 Sep 15.

Abstract

Enterococcus faecalis is a commensal of the human gastrointestinal tract; it is also an opportunistic pathogen and one of the leading causes of hospital-acquired infections. E. faecalis produces biofilms that are highly resistant to antibiotics, and it has been previously reported that certain genes of the epa operon contribute to biofilm-associated antibiotic resistance. Despite several studies examining the epa operon, many gene products of this operon remain annotated as hypothetical proteins. Here, we further explore the epa operon; we identified epaQ, currently annotated as encoding a hypothetical membrane protein, as being important for biofilm formation in the presence of the antibiotic daptomycin. Mutants with disruptions of epaQ were more susceptible to daptomycin relative to the wild type, suggesting its importance in biofilm-associated antibiotic resistance. Furthermore, the ΔepaQ mutant exhibited an altered biofilm architectural arrangement and formed small aggregates in liquid cultures. Our cumulative data show that epa mutations result in altered polysaccharide content, increased cell surface hydrophobicity, and decreased membrane potential. Surprisingly, several epa mutations significantly increased resistance to the antibiotic ceftriaxone, indicating that the way in which the epa operon impacts antibiotic resistance is antibiotic dependent. These results further define the key role of epa in antibiotic resistance in biofilms and in biofilm architecture.IMPORTANCEE. faecalis is a common cause of nosocomial infection, has a high level of antibiotic resistance, and forms robust biofilms. Biofilm formation is associated with increased antibiotic resistance. Therefore, a thorough understanding of biofilm-associated antibiotic resistance is important for combating resistance. Several genes from the epa operon have previously been implicated in biofilm-associated antibiotic resistance, pathogenesis, and competitive fitness in the GI tract, but most genes in this locus remain uncharacterized. Here, we examine epaQ, which has not been characterized functionally. We show that the ΔepaQ mutant exhibits reduced biofilm formation in the presence of daptomycin, altered biofilm architecture, and increased resistance to ceftriaxone, further expanding our understanding of the contribution of this operon to intrinsic enterococcal antibiotic resistance and biofilm growth.

Keywords: cell wall polysaccharide; cell wall stress; functional genomics; intrinsic resistance to antibiotics.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics*
  • Biofilms / growth & development*
  • Cell Membrane / genetics
  • Drug Resistance, Bacterial / genetics*
  • Enterococcus faecalis / drug effects
  • Enterococcus faecalis / genetics*
  • Enterococcus faecalis / physiology*
  • Humans
  • Operon / genetics

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins