Characterization of different biodegradable scaffolds in tissue engineering

Mol Med Rep. 2019 May;19(5):4043-4056. doi: 10.3892/mmr.2019.10066. Epub 2019 Mar 21.

Abstract

The aim of the present study was to compare the characteristics of acellular dermal matrix (ADM), small intestinal submucosa (SIS) and Bio‑Gide scaffolds with acellular vascular matrix (ACVM)‑0.25% human‑like collagen I (HLC‑I) scaffold in tissue engineering blood vessels. The ACVM‑0.25% HLC‑I scaffold was prepared and compared with ADM, SIS and Bio‑Gide scaffolds via hematoxylin and eosin (H&E) staining, Masson staining and scanning electron microscope (SEM) observations. Primary human gingival fibroblasts (HGFs) were cultured and identified. Then, the experiment was established via the seeding of HGFs on different scaffolds for 1, 4 and 7 days. The compatibility of four different scaffolds with HGFs was evaluated by H&E staining, SEM observation and Cell Counting Kit‑8 assay. Then, a series of experiments were conducted to evaluate water absorption capacities, mechanical abilities, the ultra‑microstructure and the cytotoxicity of the four scaffolds. The ACVM‑0.25% HLC‑I scaffold was revealed to exhibit the best cell proliferation and good cell architecture. ADM and Bio‑Gide scaffolds exhibited good mechanical stability but cell proliferation was reduced when compared with the ACVM‑0.25% HLC‑I scaffold. In addition, SIS scaffolds exhibited the worst cell proliferation. The ACVM‑0.25% HLC‑I scaffold exhibited the best water absorption, followed by the SIS and Bio‑Gide scaffolds, and then the ADM scaffold. In conclusion, the ACVM‑0.25% HLC‑I scaffold has good mechanical properties as a tissue engineering scaffold and the present results suggest that it has better biological characterization when compared with other scaffold types.

MeSH terms

  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / metabolism
  • Cell Proliferation
  • Cells, Cultured
  • Collagen / chemistry
  • Collagen Type I / chemistry
  • Extracellular Matrix / chemistry
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Gingiva / cytology
  • Humans
  • Microscopy, Fluorescence
  • Tensile Strength
  • Tissue Engineering*
  • Tissue Scaffolds / chemistry*

Substances

  • Bio-Gide
  • Biocompatible Materials
  • Collagen Type I
  • Collagen