Epitaxial Bi2FeCrO6 Multiferroic Thin-Film Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation

ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13185-13193. doi: 10.1021/acsami.8b20998. Epub 2019 Apr 1.

Abstract

The photoelectric properties of multiferroic double-perovskite Bi2FeCrO6 (BFCO), such as above-band gap photovoltages, switchable photocurrents, and bulk photovoltaic effects, have recently been explored for potential applications in solar technology. Here, we report the fabrication of photoelectrodes based on n-type ferroelectric (FE) semiconductor BFCO heterojunctions coated with p-type transparent conducting oxides (TCOs) by pulsed laser deposition and their application for photoelectrochemical (PEC) water oxidation. The photocatalytic properties of the bare BFCO photoanodes can be improved by controlling the FE polarization state. However, the charge recombination as well as the limited charge transfer kinetics in the photoanode/electrolyte cause major energy loss and thus hinder the PEC performance. We show that this problem may be addressed by the deposition of an ultrathin p-type NiO layer on the photoanode to enhance the charge transport kinetics and reduce charge recombination at surface-trapped states for increased surface band bending. A fourfold enhancement of photocurrent density, up to 0.4 mA cm-2 (at +1.23 V vs RHE), a best performance of stability over 4 h, and a high incident photon-to-current efficiency (∼3.7%) were achieved under 1 sun illumination in such p-NiO/n-BFCO heterojunction photoanodes. These studies reveal the optimization of PEC performance by polarization switching of BFCO and the successful achievement of p-TCOs/n-FE heterojunction photoanodes that are able to sustain water oxidation that is stable for many hours.

Keywords: charge recombination rate; ferroelectric polarization; heterojunction photoanode; photoelectrochemistry; transparent conducting oxides.