Unprecedented High Oxygen Evolution Activity of Electrocatalysts Derived from Surface-Mounted Metal-Organic Frameworks

J Am Chem Soc. 2019 Apr 10;141(14):5926-5933. doi: 10.1021/jacs.9b00549. Epub 2019 Mar 28.

Abstract

The oxygen evolution reaction (OER) is a key process for renewable energy storage. However, developing non-noble metal OER electrocatalysts with high activity, long durability and scalability remains a major challenge. Herein, high OER activity and stability in alkaline solution were discovered for mixed nickel/cobalt hydroxide electrocatalysts, which were derived in one-step procedure from oriented surface-mounted metal-organic framework (SURMOF) thin films that had been directly grown layer-by-layer on macro- and microelectrode substrates. The obtained mass activity of ∼2.5 mA·μg-1 at the defined overpotential of 300 mV is 1 order of magnitude higher than that of the benchmarked IrO2 electrocatalyst and at least 3.5 times higher than the mass activity of any state-of-the-art NiFe-, FeCoW-, or NiCo-based electrocatalysts reported in the literature. The excellent morphology of the SURMOF-derived ultrathin electrocatalyst coating led to a high exposure of the most active Ni- and Co-based sites.