Truncated titanium/semiconductor cones for wide-band solar absorbers

Nanotechnology. 2019 Jul 26;30(30):305203. doi: 10.1088/1361-6528/ab109d. Epub 2019 Mar 18.

Abstract

A truncated Ti and Si cones metasurface has been proposed for wide-band solar absorber (WSA), which produced a high average absorption of 94.7% in the spectral region from 500 to 4000 nm. A maximal enhancement factor of 166.0% was achieved by the WSA in comparison with the absorption of Ti/Si cylinder resonators based absorber. Under the standard solar radiance, a high full-spectrum solar absorption efficiency of 96.1% was obtained for the WSA in the energy range from 0.28 to 4.0 eV. The spectral bandwidth with absorption above 90% is up to 3.402 μm, which shows an enhancement factor of 165.0% than that of the WSA intercalated by the SiO2. Other semiconductors such as Ge, GaAs have been utilized to form the WSA, which also maintained the near-unity absorption in the wide-band spectrum. The plasmonic resonant response of the Ti material and the strong electromagnetic coupling capability of the Si resonator, and the plasmonic near-field coupling by the adjacent truncated cones were the main contributions for the impressive absorption behaviors. These findings pave a new way for achieving full-spectrum solar absorber via combining the Ti material and semiconductors, which could open potential approaches for active optoelectronic devices such as photo-detectors, hot-electron related modulators, and solar cells, etc.