Complete photodissociation dynamics of CF2I2 in solution

Phys Chem Chem Phys. 2019 Mar 27;21(13):6859-6867. doi: 10.1039/c9cp00507b.

Abstract

Photodissociation dynamics of CF2I2 in cyclohexane were evaluated by probing the C-F stretching mode over a wide time range after ultraviolet excitation using femtosecond infrared spectroscopy. After the ultrafast (<0.2 ps) state-selective photodissociation of CF2I2 as in the gas phase (267 nm excitation led to exclusive three-body dissociation (CF2 + I + I), 350 nm to exclusive two-body dissociation (CF2I + I), and 310 nm to a mixture of three- and two-body dissociations), various secondary reactions were observed. Once produced, some nascent CF2 radicals immediately formed a complex with the departing I atom (ICF2), which produced either CF2I or CF2 radicals. The produced CF2I geminately recombined with the I atom, whereas the CF2 radical reacted bimolecularly to produce C2F4 with a diffusion-limited rate constant of 8.1 × 109 M-1 s-1. Some nascent CF2I radicals were produced with sufficient excess energy to further dissociate into CF2 and I, or immediately reacted with the dissociated I atom to form the I2-CF2 isomer that rapidly dissociated into CF2 and I2. Other nascent CF2I radicals geminately recombined with the I atom with various time constants. Thus, the nascent photoproducts, CF2 and CF2I take various reaction paths: complex formation, secondary dissociation, isomer formation, and fast and slow germinate rebindings. The ensuing reaction path of the nascent photoproduct is dictated by its internal energy as well as solvent environment, which leads to different interactions between the photoproduct and solvent. Measurement over a broad time range with a structure-sensitive probe could reveal the fate of all the reaction intermediates, which allows evaluation of the complete reaction dynamics in solution.