Coding Huygens' metasurface for enhanced quality holographic imaging

Opt Express. 2019 Mar 4;27(5):7108-7119. doi: 10.1364/OE.27.007108.

Abstract

In this paper, coding Huygens' metasurface (CHM) is proposed for holographic imaging with enhanced quality. A weighted holographic algorithm is used to calculate the phase distribution at the interface and to design the CHM. Experimental demonstration performed in the microwave region validates holographic imaging with the ability to modulate energy distribution among focal points and improve image quality. By judiciously engineering both electric and magnetic dipolar resonators, the proposed digital Huygens' meta-atom is able to provide a full transmission-phase covering the whole range of 2π together with a near-unity transmission efficiency. The proof-of-concept experiments show that holographic imaging quality can be indeed improved by using digital meta-atoms with several bits. Furthermore, the modulation of intensity distribution among focal points is experimentally realized by using the 3-bits CHM. The proposed CHM hologram shows great potential in a variety of application fields, such as programmable high-resolution imaging lenses, microscopy, data storage, information processing, and computer-generated holograms.