Enhanced absorption and photoluminescence from dye-containing thin polymer film on plasmonic array

Opt Express. 2019 Feb 18;27(4):5083-5096. doi: 10.1364/OE.27.005083.

Abstract

Thin films containing light emitters act as light-to-light converters that absorb the incident light and emit luminescence. This well-known phenomenon is photoluminescence (PL). When a photoluminescent film is notably thinner than the absorption length of emitters, it exhibits weak absorption of incident light. The absorption can be increased by depositing the thin film on a plasmonic array of metallic nanocylinders arranged with a specific periodicity. The array couples the incident light into the thin film, facilitating the plasmon-enhanced absorption by the emitters in the film. In this study, we demonstrate both experimentally and numerically the plasmon-enhanced absorption of a rhodamine 6G-containing film that is thinner than its absorption length using a periodic array of Al nanocylinders. The experimental results demonstrate that the spectrally integrated PL intensity is increased up to 3.78 times. In addition to enhanced absorption, the array is also found to diffract the PL into a direction determined by the periodicity, thereby facilitating the multiplied enhancement of PL. The combination of the two factors yields a PL intensity enhanced up to 10 times at a specific angle and wavelength. Numerical simulations combining the carrier kinetics with full-wave electromagnetics in the time-domain support the experimental observations.