Terminal coordination of diatomic boron monofluoride to iron

Science. 2019 Mar 15;363(6432):1203-1205. doi: 10.1126/science.aaw6102. Epub 2019 Mar 14.

Abstract

Boron monofluoride (BF) is a diatomic molecule with 10 valence electrons, isoelectronic to carbon monoxide (CO). Unlike CO, which is a stable molecule at room temperature and readily serves as both a bridging and terminal ligand to transition metals, BF is unstable below 1800°C in the gas phase, and its coordination chemistry is substantially limited. Here, we report the isolation of the iron complex Fe(BF)(CO)2(CNArTripp2)2 [ArTripp2, 2,6-(2,4,6-(i-Pr)3C6H2]2C6H3; i-Pr, iso-propyl], featuring a terminal BF ligand. Single-crystal x-ray diffraction as well as nuclear magnetic resonance, infrared, and Mössbauer spectroscopic studies on Fe(BF)(CO)2(CNArTripp2)2 and the isoelectronic dinitrogen (N2) and CO complexes Fe(N2)(CO)2(CNArTripp2)2 and Fe(CO)3(CNArTripp2)2 demonstrate that the terminal BF ligand possesses particularly strong σ-donor and π-acceptor properties. Density functional theory and electron-density topology calculations support this conclusion.