A combined chemical and phytoremediation method for reclamation of acid mine drainage-impacted soils

Environ Sci Pollut Res Int. 2019 May;26(14):14414-14425. doi: 10.1007/s11356-019-04785-z. Epub 2019 Mar 13.

Abstract

Production of acid mine drainage (AMD) and acid sulfate soils is one of the most concerning environmental consequences associated with mining activities. Implementation of appropriate post-mining AMD management practices is very important to minimize environmental impacts such as high soil acidity, soil erosion, and metal leachability. The objective of this study was to develop a cost-effective and environment-friendly "green" technology for the treatment of AMD-impacted soils. This study utilized the metal-binding and acid-neutralizing capacity of an industrial by-product, namely drinking water treatment residuals (WTRs), and the extensive root system of a metal hyper-accumulating, fast-growing, non-invasive, high-biomass perennial grass, vetiver (Chrysopogon zizanioides L.) to prevent soil erosion. Aluminum (Al)-based and calcium (Ca)-based WTRs were used to treat AMD-impacted soil collected from the Tab-Simco coal mine in Carbondale, IL. Tab-Simco is an abandoned coal mine, with very acidic soil containing a number of metals and metalloids such as Fe, Ni, Zn, Pb, and As at high concentrations. A 4-month-long greenhouse column study was performed using 5% and 10% w/w WTR application rates. Vetiver grass was grown on the soil-WTR mixed media. Turbidity and total suspended solid (TSS) analysis of leachates showed that soil erosion decreased in the soil-WTR-vetiver treatments. Difference in pH of leachate samples collected from control (3.06) and treatment (6.71) columns at day 120 indicated acidity removal potential of this technology. A scaled-up simulated field study was performed using 5% WTR application rate and vetiver. Soil pH increased from 2.69 to 7.2, and soil erosion indicators such as turbidity (99%) and TSS (95%) in leachates were significantly reduced. Results from the study showed that this "green" reclamation technique has the potential to effectively treat AMD-impacted soils.

Keywords: Acid mine drainage; Acid sulfate soil; Drinking water treatment residuals; Reclamation; Vetiver grass.

MeSH terms

  • Acids
  • Biodegradation, Environmental
  • Biomass
  • Chrysopogon / metabolism
  • Environmental Restoration and Remediation / methods*
  • Metals / analysis
  • Metals / metabolism
  • Mining*
  • Soil
  • Soil Pollutants / analysis*
  • Soil Pollutants / metabolism
  • Sulfates / analysis

Substances

  • Acids
  • Metals
  • Soil
  • Soil Pollutants
  • Sulfates