In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles

Chemosphere. 2019 Jun:224:816-826. doi: 10.1016/j.chemosphere.2019.02.160. Epub 2019 Feb 27.

Abstract

Zero-valent iron nanoparticles (ZVIN) have found applications in many strategies for on-site soil and groundwater decontamination. A number of studies have reported the prospective utilization of ZVIN in the reduction of chlorinated organic compounds such as dense non-aqueous phase liquids (DNAPLs) in groundwater. Due to their bioaccumulation and carcinogenesis, DNAPLs in groundwater are a human health hazard and pose environmental risks. Therefore, decontamination of these contaminants is necessary. This study presents the in-situ remediation of trichloroethylene (TCE), perchloroethene (PCE), and 1,2-dichloroethene (1,2-DCE) DNAPLs through the direct injection of polyethylenimine (PEI)-coated ZVIN (PEI-ZVIN composite materials) to facilitate the reduction of contaminants in low-permeability media. A field test was conducted at the premises of a petrochemical company, situated in the Miaoli County of Northern Taiwan that discharged significant amounts of DNAPLs. After in-situ injection and one-day of reaction with groundwater contaminants, ZVIN was further characterized to examine its efficacy in the reduction of pollutants. After the direct injection of PEI-ZVIN, a notable reduction in the concentration of DNAPLs was recorded with conversion from toxic to non-toxic substances. Use of resistivity image profiling (RIP) technique suggested similar conductivity data for the PEI-coated ZVIN suspension and groundwater samples. X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) studies depicted that the oxidation of ZVIN and PEI-ZVIN was occurring after the reductive reaction with contaminated groundwater. The reacted samples had bond distance values of 1.98, 2.00, 1.96, and 1.94 Å. Combining floating surface-coated ZVIN and RIP technique seems promising and environmentally attractive.

Keywords: DNAPLs; Decontamination; In-situ groundwater decontamination; Injection method; Polyethylenimine; Zero-valent iron nanoparticles.

MeSH terms

  • Dichloroethylenes / metabolism
  • Environmental Restoration and Remediation / methods*
  • Groundwater / chemistry*
  • Humans
  • Hydrocarbons, Chlorinated / metabolism*
  • Iron / chemistry
  • Metal Nanoparticles / chemistry*
  • Polyethyleneimine / chemistry*
  • Prospective Studies
  • Soil / chemistry
  • Taiwan
  • Tetrachloroethylene / metabolism
  • Trichloroethylene / metabolism
  • Water Pollutants, Chemical / analysis*

Substances

  • Dichloroethylenes
  • Hydrocarbons, Chlorinated
  • Soil
  • Water Pollutants, Chemical
  • Trichloroethylene
  • Polyethyleneimine
  • Iron
  • Tetrachloroethylene
  • 1,2-dichloroethylene